Back to LAPACK/BLAS
la.factorizations.schur
Compute the Schur decomposition of a general n×n matrix A.
Syntax
la.factorizations.schur(A, options?)
Description
Compute the Schur decomposition of a general n×n matrix A. A = Z * T * Z^T where T is quasi-upper triangular (real Schur form) and Z is orthogonal. The diagonal of T contains 1×1 blocks (real eigenvalues) and 2×2 blocks (complex conjugate pairs of eigenvalues). Note: This implementation uses DGEEV to compute eigenvalues. The full Schur decomposition with DGEES would provide the actual quasi-triangular form, but DGEES is not currently exported.
Parameters
| Name | Description |
|---|---|
| A | - Input square matrix (n × n). |
| options(optional) | - Decomposition options |
Returns
SchurResult